
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

  
AbleControl:   Computer   Navigation   for   Fine   Motor   Control   Disabilities   

Mona   Abdelrahman   
  

  
  

 
 
 
 
 
 
 
 



Introduction   and   Overview   
One   of   the   biggest   problems   with   creating   new   technologies   is   having   them   be   accessible   

to   people   of   all   abilities.   For   people   who   need   accommodations,   the   lack   of   accessibility   tech   
results   in   people   having   their   interactions   with   technology   limited,   the   technology   being   hard   to   
use/understand,   or   simply   being   completely   alienated   from   new   tools.     

In   my   project,   I   am   focusing   on   creating   a   motion-based   system   for   people   who   have   fine   
motor   control   issues   (that   manifest   in   hand   tremors).   For   people   with   fine   motor   control   issues,   it   
is   often   hard   for   them   to   use   a   keyboard   and   mouse   because   of   the   smaller,   precise   movements   
that   are   required   for   use.   I   wanted   to   create   a   system   that   allows   for   full   computer   interaction   and   
isn’t   regulated   to   a   specific   program   or   scenario.   I   also   wanted   a   system   that   is   somewhat   
familiar   in   terms   of   the   user   interface   and   the   interactions.   This   motivated   me   to   use   the   
LeapMotion   sensor   to   allow   for   a   large   gesture-based   input.   Since   these   individuals   have   issues   
with   small   muscles,   using   larger   muscle   groups   (such   as   those   controlling   whole   hand   
movement)   allows   for   them   to   still   have   the   familiarity   of   hand   interaction   while   still   
accommodating   for   their   needs.   Another   reason   why   I   decided   to   use   gesture   as   the   primary   input   
mode   is   because   using   a   primarily   voice-based   system   would   be   susceptible   to   background   
noises   or   if   other   people   are   around.   Similarly,   eye   tracking   can   be   hard   to   use   when   there   is   
uneven   lighting   or   when   the   user   is   wearing   glasses.   Although   my   system   uses   a   combination   of  
gesture   and   voice,   the   voice   system   is   primarily   for   inputting   text   and   some   verbal   action   
shortcuts.   

Beyond   just   accessibility,   this   can   also   be   helpful   for   use   for   anyone   who   also   might   not   
be   able   to   use   their   hands   in   a   full   capacity   due   to   injury   or   circumstance   (ex.   sticky   hands).     
  

System   Description   
The   current   system   takes   in   two   inputs:   hand   tracking/motions   and   voice   input/controls.   

The   hand   controls   serve   as   a   way   to   replace   the   mouse,   and   the   voice   input   replaces   the   
keyboard.   Currently,   the   system   moves   the   mouse   cursor   on   the   screen   of   the   user’s   device   when   
the   user’s   hand   moves.   For   example,   if   the   user   moves   their   hand   up,   the   cursor   will   follow   and   
also   move   up.   The   user   can   also   perform   clicks,   double   clicks,   and   click-and-drag   motions   by   
placing   their   hand   into   a   grabbing   position.   If   the   user   holds   this   position   for   2   seconds,   they   
perform   a   single   click.   If   they   hold   for   4   seconds,   they   double   click.   If   they   hold   for   6   seconds,   
they   are   in   click-and-drag   mode   until   they   release   the   grabbing   motion.   The   user   can   also   
perform   a   right   click   by   performing   the   grabbing   motion   with   their   palm   facing   up   for   about   half   
a   second.   

To   input   a   phrase   into   an   input   field,   the   user   simply   has   to   click   on   it,   turn   their   hand   so   
their   palm   is   facing   up,   wait   a   few   seconds,   then   speak   their   phrase.   The   phrase   will   then   appear  
on   the   screen.   For   the   user   to   input   a   voice   command,   they   will   perform   the   same   action   and   use   
one   of   the   pre-defined   voice   commands   instead.   These   commands   include   actions   for   saving   a   
file,   opening   a   file,   closing   a   window,   undoing   an   action,   redoing   an   action,   and   the   usage   of   
some   keyboard   keys   (such   as   enter   or   backspace).   



  
Here   on   the   left,   we   can   see   

some   sample   inputs   from   the   
click   and   drag   motion   in   paint.   In   
the   far   left,   I   have   an   example   of   
drawing   circles   with   a   standard   
laptop   trackpad.   Next   to   it   are   
some   circles   that   I   drew   with   the   
system,   but   without   any   
smoothing.   As   we   can   see,   it   is   
very   jittery.   In   the   middle   right,   I   
have   an   example   of   a   circle   I   

drew   with   the   system   and   smoothing   activated.   As   we   can   see,   the   smoothing   does   a   great   deal   
for   reducing   the   jitteriness   of   the   LeapMotion   tracking   inputs.   On   the   far   right,   there   is   another   
circle   drawn   with   the   system,   but   with   shaking   hands   to   simulate   a   hand   tremor.   In   this   case,   we   
can   see   how   effective   the   
smoothing   is   at   reducing   the   
impacts   of   hand   shakiness   to   
prevent   unwanted   motions   and   
behaviors   with   the   mouse.     
  

The   example   shown   on   the   
right   is   demonstrating   the   usage   of   
some   of   the   voice   control   features.   
In   the   very   top   frame,   I   have   a   
Word   document   open   and   I   am   
placing   my   hand   in   the   upright   
position   to   enter   in   some   text.   The   
microphone   indicates   that   it   is   
active   by   displaying   an   icon   in   the   
bottom   right   corner   so   the   users   can   
know   that   the   system   is   ready   for   
them   to   input   text.   In   the   middle   
frame,   we   see   that   the   system   
recognized   the   audio   and   placed   the   
text   into   the   document.   In   the   last   
frame,   I   opened   the   microphone   
again,   and   said   the   key   phrase   “save   
file”.   As   shown,   the   system   opened   
the   ‘save   file   as’   dialog   box.   



How   it   works   

In   the   diagram   above,   we   can   see   a   general   system   architecture   and   overview.   The   
LeapMotion   sensor   interfaces   with   Python   by   using   the   LeapMotion   SDK.   From   the   LeapMotion   
SDK,   I   decided   to   use   the   wrist   position   function   instead   of   the   hand   position   as   I   had   originally   
intended.   A   core   design   principle   for   the   gestures   and   movements   was   to   have   large   muscle   
group   movements   and   gestures   to   fulfill   the   project   goal   of   being   an   accessibility   system.   Hand   
movements   and   gestures   are   then   passed   through   a   smoothing   window   of   about   40   frames   that   
average   out   the   location   of   the   hand.   The   change   in   position   from   the   last   location   is   then   
calculated   and   passed   to   the   Win32   API   to   interface   with   Windows.   This   API   allows   for   Python   
to   interface   and   control   aspects   of   the   system   state   in   Windows.   

For   the   speech   input,   it   requires   that   the   user   have   a   microphone   input   set   up   on   their   
computer.   The   system   then   recognizes   the   voice   input   gesture   (flipping   the   hand   over)   via   the   
LeapMotion   sensor   by   getting   the   palm   coordinates.   Once   the   user   activates   the   speech   
recognition   module,   they   can   either   say   key   words   for   shortcuts   or   say   a   phrase   to   enter   text   in   a   
field.   All   key   phrases   are   recognized,   and   if   no   key   phrases   are   present,   the   system   sends   text   to   
the   computer.   The   key   phrase   actions   are   done   by   simulating   keyboard   shortcut   entries   by   
sending   the   corresponding   keyboard   shortcut   to   Windows   (as   a   keypress   combination)   when   a   
key   phrase   is   detected.   For   text   input,   the   system   interfaces   with   the   windows   keyboard   to   
“write”   text   to   the   field   that   is   selected.   

As   previously   mentioned,   the   core   design   principle   when   choosing   how   to   make   gestures   
was   to   have   primarily   large   muscle   hand   movements.   Afterall,   the   main   goal   of   the   system   was   
to   be   an   alternative   input   mode   for   users   with   fine-motor   control   issues,   so   being   able   to   avoid   
these   as   much   as   possible   is   a   cornerstone   of   the   project.   Because   of   this,   I   opted   to   use   the   wrist   
position   instead   of   the   hand   position   as   I   had   originally   intended.   The   main   reason   behind   this   is   
because   the   wrist   position   is   much   more   stable   than   the   hand   position,   so   this   allows   for   the   
system   to   be   more   accurate   when   it   comes   to   hand   tracking   and   it   reduces   the   potential   for   
unintended   movements   by   the   user.   The   two   main   input   gestures   are   grabbing   to   click   and   
flipping   the   hand   over   to   input   text.   Flipping   the   hand   over   requires   larger   arm   muscles,   so   it   
should   not   be   impacted   by   any   hand   shakiness   or   tremors.   The   flipping   motion   was   actually   
simple   to   implement,   since   it   only   required   getting   the   palm   normal   vectors   and   requiring   that   the   



y   and   z   coordinates   fulfill   certain   conditions   (mainly   that   the   y   normal   is   above   0.7)   to   be   
detected   to   be   in   the   up   position.   

When   deciding   on   the   clicking   motion,   I   opted   to   go   for   one   of   the   predefined   motions   in   
the   LeapMotion   SDK   -   grabbing   and   pinching.   This   was   done   because   I   wanted   a   motion   that   
simulated   the   physical   presence   felt   when   someone   would   click,   as   this   is   a   very   subtle   form   of   
feedback.   However,   I   also   wanted   the   motion   to   be   able   to   be   done   with   only   one   hand,   and   it’s   
important   to   have   a   motion   that   cannot   be   mistakenly   recognized   as   another   (such   as   a   clap,   
where   the   user   has   to   move   both   hands,   which   can   cause   other   unintended   consequences).   When   
deciding   between   grabbing   and   pinching,   it   ultimately   came   down   to   which   one   is   easier   for   
people   with   hand   tremors.   Although   my   testing   revealed   that   pinching   was   more   accurately   
recognized   by   the   sensor,   it   is   extremely   difficult   to   maintain   a   pinching   motion   for   the   time   
period   required   to   do   a   click,   much   less   any   of   the   other   clicks   that   require   holding   the   position   
for   longer   periods   of   time.   The   pinch   motion   requires   the   
thumb   to   touch   the   fingers,   which   cannot   be   held   
consistently   with   hand   tremors.   Conversely,   the   grabbing   
motion   is   slightly   less   accurate,   but   it   relies   on   having   a   
general   grabbing   position,   and   the   hand   does   not   need   to   be   
in   a   tight   fist.   Testing   with   the   grabbing   motion   shows   that   as   
long   as   the   hand   is   in   a   general   curled   position,   any   hand   
tremors/shaking   do   not   significantly   impact   detection.   This   
makes   the   grabbing   motion   the   overall   best   motion   to   
combine   the   UI   feedback   needs   and   the   accessibility   needs   
of   the   users.   However,   the   grabbing   motion   isn’t   perfect,   as   
we   can   see   here   on   the   left.   In   this   picture   I   have   my   hand   in   
a   tight   fist   and   the   leapMotion   sensor   is   processing   one   of   
my   fingers   as   sticking   out.   Although   it   can   be   resolved   by   
removing   the   hand   from   the   frame   and   bringing   it   back,   it   
can   be   annoying   at   times.   

As   explained   above,   the   clicking   functionality   was   one   of   the   trickiest   parts   of   the   project,   
since   it   required   doing   a   lot   of   testing   to   figure   out   timing   for   each   position   and   gesture   
modification.   Testing   usually   consisted   of   navigating   within   a   specific   program/the   desktop   and   
seeing   if   I   can   click   around   without   too   much   trouble.   This   was   the   part   of   the   project   that   I   
iterated   over   the   most.   The   click   and   drag   motion   is   also   inconsistent,   as   it   works   well   in   the   
context   of   stroke   drawing   in   paint,   but   doing   the   exact   same   function   in   the   OneNote   desktop   app   
did   not   work.   This   may   be   because   of   some   privileges   that   are   not   allowed   access   by   the   Win32   
api   for   security   reasons.   Although   I   hoped   to   be   able   to   resolve   this   issue,   it   was   more   obscure   
than   I   initially   thought.   The   challenges   with   the   click   and   drag   functionality   taught   me   how   
oftentimes   things   can   be   grossly   simplified   when   discussing   features   and   design.   In   the   context   
of   this   project   specifically   where   I   am   trying   to   replace   another   device,   it   often   is   not   enough   to   



have   analogous   substitutions   for   functionality   and   may   require   thinking   more   about   the   actions   in   
terms   of   their   intended   consequences   instead   of   the   action   itself.   

However,   the   voice   recognition   was   one   of   the   more   simple   aspects   of   the   project   to   
implement.   The   hardest   part   with   the   voice   input   was   actually   having   the   UI   icon   show   up   
properly   when   the   microphone   was   active   and   deciding   on   a   voice   command   schema   that   was   
consistent   to   not   confuse   the   users.   To   test   the   voice   commands,   I   used   them   in   the   context   of   
them   being   used   in   the   middle   of   other   tasks,   such   as   clicking   somewhere   and   entering   text   or   
using   the   commands   to   compliment   the   mouse   functions.   Since   I   used   a   third   party   voice   
recognition   API,   I   mainly   tested   the   voice   to   simulated   keyboard   pipeline   to   ensure   that   it   was   
performing   the   expected   behavior.   The   smoothing   and   cursor   movement   was   also   fairly   straight   
forward,   it   mainly   required   testing   to   tune   internal   parameters.   These   tests   involved   simulating   
hand   shakiness   and   seeing   how   the   system   was   reacting,   and   also   testing   the   cursor   
responsiveness   when   gesturing.     

Overall,   the   system   works   well   for   cursor   and   voice   movements,   and   single   clicks   work   
well   enough.   Double   clicks   and   right   clicks   also   have   decent   performance,   although   not   as   
consistent   as   the   single   clicks.   The   click   and   drag   motion   is   the   most   inconsistent,   but   it   allows   
the   user   to   scroll,   which   is   the   biggest   use   for   it.   For   general   system   testing,   I   would   perform   
tasks   such   as   clicking   on   small   buttons   on   the   screen,   opening   programs,   entering   text,   and   
performing   actions   within   the   programs   (such   as   opening   and   saving   files).     
  

Project   Modifications   +   Roadblocks   
The   project   features   and   goals   have   gone   under   significant   modifications   since   the   Design   

Studio.   Originally,   I   had   planned   for   there   to   be   motion   correction   and   motion   prediction.   
However,   as   I   implemented   the   smoothing,   I   realized   that   the   motion   correction   became   
redundant   since   the   primary   motion   correction   would   be   hand   shakiness,   which   the   smoothing   
already   takes   care   of.   With   the   motion   prediction,   it   would   not   have   been   a   good   UI,   since   if   the   
users   wanted   to   have   suggested   motions,   they   would   still   need   to   navigate   such   a   UI   by   using   
gestures,   making   it   redundant   at   best.   

I   had   also   originally   planned   to   have   an   onscreen   keyboard   so   users   can   virtually   type;   
however,   this   was   quickly   scrapped   after   it   became   obvious   that   it   was   too   tedious   to   enter   in   
each   key   individually   and   the   clicking   motions   did   not   interface   well   with   the   users   and   the   on   
screen   keyboard,   since   it   resulted   in   a   lot   of   accidental   clicks   on   the   keyboard,   making   it   
effectively   unusable.   I   got   around   this   by   using   the   voice   input   previously   mentioned.   Using   
speech   recognition   was   much   more   effective   for   user   input   and   action   shortcuts/commands.   
  

User   Studies   
Although   I   did   not   have   the   opportunity   to   test   the   user   studies   with   people   who   have   

fine-motor   control   disabilities,   I   was   able   to   do   some   testing   with   members   of   my   immediate   
household   (my   sister   and   my   parents).   I   noticed   that   while   it   took   a   while   to   understand   the   
movement   plane   of   the   hand,   once   it   was   understood   (usually   by   showing   an   example)   it   was   



fairly   simple.   The   user   studies   also   helped   guide   how   to   display   the   instructions   page   and   some   
smaller   points   of   user   feedback-such   as   the   range   of   the   cursor   and   adjusting   parameters.   The   
user   studies   were   also   very   helpful   in   guiding   what   sort   of   features   I   should   add.   It   made   me   
realize   the   gaps   in   the   system   for   usability   and   what   things   I   had   taken   for   granted.   As   a   result   of   
the   user   studies,   I   added   in   a   start   screen   so   users   can   decide   on   a   primary   input   hand,   allowed   
for   two   hands   to   perform   input   at   the   same   time,    and   removed   the   on-screen   keyboard.   The   user   
studies   also   helped   me   visualize   the   progress   from   really   unusable   to   fairly   usable   at   the   end.   
This   was   valuable   as   oftentimes   I   was   not   always   able   to   tell   how   I   was   progressing,   and   seeing   
someone   else   use   the   system   allowed   me   to   shift   focus   to   the   needed   areas.   
  

Performance   
Overall,   the   performance   of   the   system   is   decent   and   users   are   able   to   navigate   and   do  

basic   tasks.   Although   there   is   some   inconsistency   with   the   clicking   actions,   the   smoothing   does   a   
lot   to   help   with   shakiness   and   performs   quite   well.   The   smoothing   works   by   taking   the   average   
of   the   last   40   LeapMotion   frames.   Since   hand   tremors   involve   the   movement   of   the   hand   in   an   
oscillatory   movement,   smoothing   by   averaging   effectively   takes   the   position   that   the   oscillations   
are   occurring   around.   The   biggest   takeaway   from   the   testing   and   overall   performance   was   that   
the   things   I   expected   to   be   the   most   simple   where   actually   the   most   difficult   to   iterate   over   
(mainly   the   clicking),   and   the   items   I   thought   I   would   spend   the   most   time   on   ended   up   to   be   
much   more   simple   in   nature   (the   motion   smoothing).   In   general,   I   think   the   clicking   isn’t   as   
robust   as   I   would   hope   because   it   is   hard   to   anticipate   how   long   of   a   cool   down   period   different   
people   may   need   between   clicks,   although   I   have   found   about   2   seconds   is   a   window   that   works   
for   most   people   (without   the   window   being   too   long   or   too   short).   

I   think   something   that   is   just   out   of   reach   is   consistent   click-and-drag   functionality.   
Although   it   works   in   some   cases,   it   doesn’t   always   work,   which   should   be   a   simple   fix   in   theory,   
but   it   is   moreso   finding   the   right   area   where   the   click-and-drag   is   breaking.   Once   this   is   resolved,   
I   believe   that   the   users   will   have   almost   full   functionality   of   the   computer   and   be   able   to   have   
access   to   everything   that   is   possible   with   a   keyboard   and   mouse.   

The   next   steps   to   improve   the   system   would   center   around   allowing   for   more   than   just   
premade   functions   to   be   made.   Currently,   the   voice   commands   work   by   sending   keyboard   
shortcuts   to   the   OS,   so   I   think   it   would   be   really   helpful   to   be   able   to   verbally   say   any   keyboard   
shortcut   and   have   it   automatically   convert   to   the   correct   key   presses,   without   it   needing   to   be   
predefined.   I   would   also   like   to   find   a   way   to   be   able   to   add   punctuation   in   sentences   seamlessly.   
An   example   of   this   would   be   saying   “Hello   comma   my   name   is   Mona   period”   so   the   text   ‘Hello,   
my   name   is   Mona.’   appears   on   the   screen.   Although   it   seems   simple   enough,   I   think   there   may   
be   several   use   cases   where   this   can   go   wrong   and   be   frustrating   for   users   so   the   UI   may   need   to   
be   reworked   to   account   for   different   cases,   such   as   wanting   to   write   the   word   ‘period’   instead   of   
‘.’.   These   additions   would   make   the   system   more   flexible   for   different   users   and   make   it   simpler   
and   more   enjoyable   to   use.   
  



Conclusion   
Overall,   the   system   seems   to   be   a   good   start   for   a   general   gesture-based   replacement   for   

the   keyboard   and   mouse.   However,   the   system   still   has   some   interesting   quirks--some   as   a   
product   of   the   LeapMotion   sensor,   some   from   the   surface-level   limitations   of   the   Win32   API   for   
Python.   Within   the   project   I   learned   a   lot   about   the   process   of   ideating,   designing,   and   
implementing   a   system   from   scratch.   It   was   also   valuable   to   have   things   fail   and   not   work   as   
expected.   One   of   my   biggest   lessons   was   that   your   users   may   ideally   act   a   certain   way,   but   
reality   can   be   much   different.   Although   it   is   not   perfect,   there   is   a   functional   skeleton   that   allows   
for   further   improvement   and   features.   
  


